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ABSTRACT

A scale model (fo = 20GHz) of a Solc-type birefringent wave filter
for millimeter wavelengths is described. The filter consists of five
cascaded identical half-~wave plates, or crystals, each composed of an
artificial anisotropic dielectric medium with its reference axis tilted
at some prescribed angle to the plane of the input polarization. The
design and analysis of an individual plate, using R. E. Collin's second~-
order theory of the birefringence of artificial anisotropic dielectrics,
and the analysis of multielement filters (filters composed of many plates),
aided by J. W, Evans's matrix method, are discussed. The experimental
filter was tested in the range of 18-33 GHz, and its measured performance
was found to compare well with the theoretical performance over a major

portion of the range of frequencies used in the tests.

A synthesis procedure for optimum (equal-ripple stop band) response
multielement filters is given, together with tables of plate angles for
such filters. This procedure combines the Fourier approximation method

of C, L, Dolph with the general synthesis method of S, E. Harris.
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PURPOSE

The purpose of this contract is to explore the possibility of
utilizing optical birefringent filter techniques at millimeter wave-
lengths. The major goal of this effort is the construction and test of

a multielement birefringent scale-model filter to operate at microwave

frequencies.

ix



I INTRODUCTION

A. GENERAL

The expansion of radio communication into the millimeter region
depends either on the development of new techniques or the adaptation
of existing techniques in new fields. The research reported herein falls
in the latter category: an optical birefringent filter serves as the
prototype for a millimeter-wave filter. As with almost all research,
there is cross-fertilization; the optimum birefringent filter synthesis
technique developed here is useful for optical filters as well as

millimeter-wave filters.

The scope of this research includes the following: the design and
testing of a scale model of a plate of artificial birefringent medium for
the millimeter-wave region; the construction and testing of an experi-
mental filter composed of several plates; and the investigation of methods
of synthesizing optimum configurations of the plates of a filter, with a

view toward providing convenient tables of filter designs (plate angles).

Although radio-frequency and optical waves are qualitatively the

same, they require different techniques, which are generally not inter-
changeable. However, optical technology is more easily adapted to lower
frequencies than the other way round. It is quite natural, therefore, to
consider the use of optical filter techniques that were originally devel-
oped to exploit the birefringence property of certain naturally occurring
transparent crystals, such as quartz and calcite, for millimeter or shorter
wavelengths, This idea was first proposed by one of the authors (LY),!%
The motivation, of course, is that microwave filter techniques are unsatis-
factory at millimeter wavelengths, Conventional waveguide filters ordi-

narily require components comparable in size to a half-wavelength., Not

References are given at the end of the report.



only are such items difficult and costly to construct for the millimeter
wave region, but transmission loss rises rapidly and power-handling capac-
ity decreases as frequency goes up. Furthermore, coherent power sources
have an upper limit on power that decreases as frequency increases, so
that the combination of high transmission loss and low available power

can easily become intolerable.

Birefringent filters are generally used with waves propagating as
a "parallel beam" in free space, rather than with guided waves. Power
density is then much less than in waveguides of small cross section, and
dispersion as in hollow waveguides is no longer a problem. Metal losses
are eliminated, to be replaced by relatively mild dielectric losses.
Birefringent filters were first invented in 1933 by Lyot,? a French as-
tronomer. These first filters required crystals or plates of unequal
length and lossy polarizers between each pair of adjacent plates. Later,
Solc,% ¢ in Czechoslovakia, invented the form of filter in which all plates
are of equal length and only two polarizers, one at each terminal, are re-

quired. The Solc-type filter is the subject of this research.

Cascades of birefringent crystals have been used in optics not only
as filters but as demodulators of light? and as broadband quarter-wave

plates.®

The analytical techniques in all these applications are similar,
as are the construction techniques. This report is concerned only with
filters, particularly those designed to have small and equal ripples in
the pass band. (Previous birefringent-filter designs have suffered from
large reflection ripples at the edges of the pass baﬂd.)

Optical birefringent filters have the advantage of very narrow pass

bands,?

owing to the large number of optical wavelengths in the path

through the birefringent material. In this respect they are much supe-

rior to optical interference filters. The presentation of an exact de-

sign theory, plus numerical tables, should therefore be of some significance,
The experimental confirmation of theories relating to the design of bire-
fringent filters at millimeter wavelengths was carried out at centimeter

wavelengths, and it was thus demonstrated that birefringent filters can

also be constructed and operated down to microwave frequencies. Here



they are equivalent to directional (nonreflecting) filters, and should
be suitable for use in (higher-mode-free) beam waveguides, particularly

at millimeter wavelengths.

The remainder of this section concerns certain elementary aspects
of birefringent plates and filters as they apply here. Section II dis-
cusses considerations leading to the choice of a suitable artificial bi-
refringent medium for the construction of a filter, and also the design
and construction of the first test plate. In Sec. III, test results and
theory for a five-element filter are compared, and the effect of the
coarse structure of the artificial birefringent medium on the filter re-
sponse is computed and compared with an ideal linear medium for a four-
and a five-element filter. Analysis and synthesis methods, including
the method of synthesizing birefringent filters with equal-ripple stop-
band response, are described in Sec. IV. Design tables for optimum bire-
fringent filters are presented in Sec. V, together with a description of

their use.

B. THE BIREFRINGENT FILTER

The birefringent filter is a four-port, intrinsically reflectionless
passive device. The term intrinsic is used because each element of the
filter by itself is assumed to be ideally reflectionless. In practice,
the elements can be well-matched over a broad band. The filter causes
radiant energy entering one of the ports to separate into bands which
emerge from two other ports, with no power emerging from the fourth port.
This mode of operation is similar to that of a directional filter in
microwave technology and is different from conventional reflection-type
filters. The four 'ports' are simply the two orthogonal polarizations
of a plane wave at the input and output ends of a birefringent filter.

The wave polarization is partially rotated as it passes through the filter,
the amount of rotation depending on the wavelength. The power is always
divided between the output ports; at certain discrete frequencies, all the
power emerges from one port. Such wave rotation also occurs in each fil-
ter element; however, while all filter elements (plates) respond to a

plane wave in a fundamentally similar way, a complete filter (cascade of



several crystals) can have a variety of different responses. For a
multielement filter, the response depends on the following design param-
eters: (1) the length of a plate, (2) its birefringence (differential
phase shift per unit length for the two polarization, which is a function
of frequency); (3) the angles between the plate axes and the input
polarization; and (4) the choice of output port (angle of output polar-
izer). This topic is discussed more fully in Sec. IV. Parts C and D

of this section discuss the frequency response of a single plate, and the
action of cascaded plates at one particular frequency, the design center

frequency fo.

C. THE BIREFRINGENT PIATE (FILTER COMPONENT ELEMENT)

1. General Properties Required for Filter Work

The term birefringence means double refraction as applied to an un-
polarized beam of light striking the surface of an anisotropic crystal.
As a result of the difference in refractive index for rays polarized
normal and parallel to the optic axis, the beam is generally (but not
always) split into two separate beams traveling in different directions
inside the plate, as shown in Fig., 1. The condition under which no
beam splitting occurs is precisely that required for birefringent filters.
This situation is shown in Fig. 2. There, the input and output surfaces
of the plate are parallel to the optic axis; propagation is normal
to that axis, and of course to the two surfaces, Birefringence is then
understood to be a differential retardation or phase shift between waves
-polarized normal to and parallel to the optic axis. In this report, the
reference axis will be a direction normal to the optic axis rather than
the optic axis itself. Here the optic axis is also called the fast axis
(of polarization), in conformance with the characteristics of the laminated
dielectric sandwich type of artificial birefringent medium used in the fil-
ters described herein. Birefringence of this type is defined as negative.
A positively birefringent crystal, on the other hand, has its slow axis in
line with the optic axis. An array of parallel dielectric cylinders (as
opposed to plates) would have positive birefringence. Both positive and
negative types of optical birefringent crystals occur in nature, and both

types of birefringence can be realized at millimeter wavelengths.

4
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2. The Half-~Wave Plate; Cascades of Half-Wave Plates

Figure 2 shows a birefringent plate that we will assume is impendance-
matched to free space., We further assume that the frequency is such that
linearly polarized waves normal and parallel to the plate reference axis
suffer a differential phase change of 180 degrees. This frequency is

called f the design center frequency, and the crystal, at frequency £

0’
is called a "half-wave plate.'

0’
' The following brief analysis of the action
of a half-wave plate on a linearly polarized wave will yield a basic

principle relating to the construction of birefringent filters.

An input wave with linear polarization in the vertical plane enters
the crystal, the reference axis of which is at an angle P to the plane of
polarization, and the output wave emerges on the right. As shown in Fig. 2,

the input wave of amplitude E is decomposed into its two components El

and E, , which are, respectivify, normal and parallel to the crystal ref-
erence axis. These waves EL and E,, pass through the crystal without
changing their amplitudes or direction of polarization and suffer a dif-
ferential phase shift of 180 degrees. (The 32331 phase shift of each wave
is of no concern here, since it plays no part in the analysis.) Thus, to
simplify the analysis, the phase of the emerging wave Eﬁl is here chosen
as zero degrees. The orthogonal wave, having traveled along the fast
axis, will have suffered a relative phase advance of 180 degrees, There-
fore, at the output, Ei may be depicted as a wave vector in phase with
Eﬁ, but with its direction of polarization reversed 180 degrees in space
with respect to E‘L at the input, as shown in Fig. 2. The two waves Ei
and Ef,(which are in phase in time) may now be added vectorially to form

a linearly polarized wave, EOUT'

The important point of this analysis is that the output wave now is
at an angle B to the plate axis. Stated in another way, a rotation of
the axis of a half-wave plate by an angle B from the plane of polarization
of the incoming wave causes the plane of polarization of that wave to be
rotated by an angle 2B. Thus, the horizontal and vertical components of

the output wave are



E. = E__ cos 2B (1)
and

E, = E; sin 28 . (2)
When B = 45 degrees, it is seen that the half-wave plate can become a

one-element filter, because all power at frequency f A emerges as a hori-

zontally polarized wave (EV =0, B, = 1). °
When there are two plates, the first plate at an angle of Bl degrees
to the vertical, the wave entering the second plate (at frequency fo)
will be polarized at an angle of 281 degrees. Clearly, to emerge with
horizontal polarization (Bp = 90 degrees), the wave must be rotated by
the second plate by the difference angle of (+90 - 281) degrees. This
rotation can be effected by letting the second plate be oriented at an

angle Bz, such that the plate reference axis bisects the difference angle

(90 - 261 degrees). Thus,

1
By =28, +3 (£ 90 - 231) degrees . (3)

w 1 it = 2
e can also write 62 Bl b ,

where pp is the output polarizer difference angle defined by pp = Bp - Bz.
Hence, pp must also have the value '

Py = 1/2(+90 - 231) . (4)

When the second plate is oriented at angle Bz, given by Eq. (3), the
plane of polarization of the output wave is rotated exactly 90 degrees
from the plane of polarization at the input. Eguation (3) can be

put in the following form,

62 - Bl = +45 degrees , (5)

which is the general solution for the two-plate filter. Although Eq. (5)

guarantees that all power at f. emerges with horizontal polarization, it

0
says nothing about the response at other frequencies, which of course

depends on the choice of Bl and the sign on the right-hand side of

7



Eq. (5). Nevertheless, a similar rather simple scheme can be used to
design a filter at frequency fo with any number of plates, and with the
total power output at any desired angle of polarization. To control the
response at other frequencies as well, a more sophisticated approach is

needed.

D. FREQUENCY RESPONSE OF A ONE-PLATE FILTER

Consider now the complete frequency response of a single-plate
filter with unit input. Instead of a frequency variable f, we will use
the birefringence parameter Y, which is one-half the differential phase
shift of the plate. Here, Y will be assumed to vary linearly with fre-
quency. Although this condition is generally not exact (it is an asymp-
totic condition for artificial anisotropic dielectrics at sufficiently
low frequencies), the assumption of linearity is extremely useful in
understanding birefringent networks. We thus define 'y, for the present

purpose only, as

Y = ﬂf/Zfo . (6)

The frequency response of the single-element filter is given by

E, = cosY (7)

and

E, = jsiny . (8)
The derivation method for these formulas will be left for a later section;
it suffices to say here that Eqs. (6) through (8) are based on an assump-
tion that at fo, the fast axis advances the phase by 90 degrees whereas
the slow axis retards the phase by the same amount--all referred to some

output reference phase which these equations state is zero.* The plate

Physically, the rate of change of phase with frequency is proportional
to time delay and must be positive. There is no similar restriction
on phase, and the initial value of phase is like a constant of integra-
tion that may be assigned an arbitrary value, conveniently zero.

8



angle is assumed to be B = 45 degrees. According to Egs. (6) through (8),
the filter has two complementary outputs, and both are periodic in vy, with
a period of 27 radians thatlencompasses two complete passbands and stop-
bands. One or the other output (either EV or EH) may be absorbed by a
dummy load that permits only the desired signal to pass. This was accom-
plished by placing very thin parallel absorbing strips in the test horns
and aligning them normal to the desired component. Note that E_, is unity

A
and E_ is zero at Y = O (zero frequency). Thus, the direct (Ev) output

H
has a low-pass filter form which is limited on the low-frequency end only
by the size of the aperture, while either output could serve as a band-
pass or band-stop filter, with center frequencies easily found from

Egs. (7) and (8).

E. ARTIFICIAL BIREFRINGENT MEDIUM

The construction of a birefringent filter for millimeter waves re-
quires an artificial birefringent crystal or medium. Our choice was the
air-dielectric sandwich, which has been analyzed by R. E. Collin,?1°
Collin's second-order theory of birefringence in an air-dielectric sand-
wich material enables us to predict how the birefringence-vs—-frequency
function deviates from linearity and helps us to choose suitable dimen-

sions for the filter structure.
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I1 DESIGN OF AN ARTIFICIAL BIREFRINGENT PLATE

A. THE ANISOTROPIC MEDIUM

The first task was to construct a single birefringent plate which
could later become one element of a multielement filter. Rough plate
dimensions were calculated, based in general on the equipment to be used
in testing the filter and in particular on the crosé section and extent
of the radiant beam that could be generated. When this work was first
planned, the availability of electronically swept signal generators up
to and including K-band (but not beyond) suggested a center frequency
of about 20 GHz. The test filter would thus be a scale model of a
millimeter-wave filter. A pair of horn reflectors with aperture cross
sections of approximatély 8 by 8 inches appeared to be well-suited for
transmitting and receiving test antennas. When the antennas were sepa-
rated about four feet, it was found that the signal-to-noise ratio of
the test signal provided enough dynamic range to measure ~ 40-dB inser-
tion loss. A.test plate of a complete filter could then be placed be-
tween the two horns, one of which was made rotatable. The test beam was
well-collimated and its cross section was found to be little greater than
that of the antenna apertures. On that basis, it was decided to make
the plate aperture 10 inches square, so that it would encompass the test
beam, and to make its length not much greater than its width to minimize
the effects of any beam divergence. An upper limit of about 3 inches
was thus placed on the thickness of a single plate in a four-—-element

filter,

The plate desién problem was then considered from the standpoint
of materials, processes, and physical (electromagnetic) constraints.
Several possible configurations were considered for the artificial bire-
fringent medium. These included air-dielectric sandwiches, gratings of
parallel dielectric rods, and gratings of parallel metal wires or strips.
Only the first configuration appeared to be amenable to impedance match-

ing over very wide operating bands. The need for impedance matching

11
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of each element was stated in the previous section. The wide operating

bandwidth requirement results from the fact that for a given order of
pass band, the bandwidth is approximately proportional to the number of

elements. Figure 3 shows four possible response shapes. The lowest pass

band, at frequency fo, was chosen as the main pass band (the lower right
sketch in Fig. 3), in order to keep the overall length of the filter rea-
sonably short. The width of'the pass band to the half-power points was
computed from an approximate formula derived from one given by Solc?®

(also approximate) for filters with equal plate angles:

pE/f) = L.2/Nk . (9)

PLATE ARRANGEMENT
OUTPUT FAN FOLDED
AXIS { Monotonically increasing ( Alternating plate
{ Degrees) plate angles) angles)
OUTeUT POWER .
1.0 1.0
0o
I [,
¢ 0.5 1.0 %% 0 05 1L.O
I
1.0 1.0
S0
l l
o 05 1.0 o 05 1L.O

TA-652582-5

FIG. 3 FUNDAMENTAL PASS AND STOP BANDS OF EQUAL-LENGTH BIREFRINGENT
FILTERS. (Two possible arrangements of plate angles and two polarizations of the
output wave relative to the output wave relative to the input are shown.)

12



Here, N is the number of elements or plates and k is an integer represent-
ing the order of the pass band. (We choose k = 1 for the lowest-order
non-zero pass band because this results in the shortest possible length
for each plate, an important consideration here.) According to Eq. (9)
for N = 4 and k = 1, we can expect pass bands of the order of 30 percent
of the center frequency. It is thus clear that in order to measure both
the pass band and the stop band, a wide operating band is required. Each
plate would thus have to be matched by tapering or stepping the edges of
the dielectric laminations.” If a high-dielectric constant material were
used for the plate laminations, a very compact filter could be provided.
However, the high cost of such materials and the abrasive quality of the
filler material (and consequent poor machinability) ruled out this choice
in favor of Rexolite 1422 (relative dielectric constant ny = 2.53), which
has good machinability and dimensional stability, as well as low loss.
With the aid of Collin's!® second-order theory of the birefringence
of air-dielectric sandwich material, it was found that a plate thickness

less than three inches was feasible, if Rexolite were used.

B. DESIGN OF A HALF-WAVE PLATE

The plan for plate construction, excluding framework, is shown in
Fig, 4. Here,t is the maximum thickness of the dielectric material
(Rexolite) and S is the spacing of the sheets of this material. In the
tapered regions, which occupy two-thirds of the plate length (thickness),
the sheet thickness t’ varies linearly from O to t over more than a wave-
length for both polarizations, yielding wide-band impedance matching.
The normalized design parameters for the composite material are the
ratios t/S for the inner region; t’'/S (varying from O to t/S) in the two
tapered regions; and S/A, where A is the wavelength in free space. The

reference axis is parallel to the thin edge of a sheet of dielectric.

The most efficient use of the dielectric laminations is obtained

when the ratio t/S is approximately 0.5. The birefringence for the static

case is then near maximum for a given material. When frequency effects

are considered, as in Collin's theory, the optimum ratio is a function

of frequency and generally is less than 0.5. Excitation of grating

13
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FIG.4 SKETCH OF THE INTERNAL CONSTRUCTION OF AN IMPEDANCE-
MATCHED ARTIFICIAL BIREFRINGENT PLATE

lobes will be prevented if S/?\d is less than 1/2, where Kd is the wave-
length in the material of the dielectric sheets. With a relative dielec-
tric constant of ng = 2.53 and a free-space wavelength of 0.59 inch (at
f_ = 20 GHz), we find that s/kO should be no greater than 0.314. (This

0

limitation on the lamination spacing was not adhered to, as explained
below.) Also, in deciding on lamination thickness and spacing, the stan-
dard sheet thicknesses should be considered. In the range of interest,
these are 0,125 and 0.063 inch. Since factory tolerances on sheet thick-
ness are 0.004 inch for both sizes, the larger thickness gives greater
accuracy in the ratios t/S and S/KO. In addition, half as many lamina-
tions would be required if the thicker sheet were used, and these lami-
nations would be considerably more robust. The larger shéet thickness

(t = 0.125 inch) was therefore chosen for the plafe, and the value t/S
was chosen as 0.4, which provided near-optimum efficiency, according to
calculations based on Collin's theory. Combined, these values yield

S/X0 = 0.53, a larger value than the 0,314 calculated above for the

14



maximum with respect to the generation of grating lobes. However, such
lobing would normally be generated by discontinuities. Since the plan
was to taper the laminations and thus essentially eliminate discontinu-
ities, the high value of S/7\0 was accepted in favor of the resulting more
robust and easier-to-construct birefringent plate. An additional advan-
tage of this choice was the fact that for the given range of test fre-
quencies, the test data (by virtue of the scaling procedure) could be

extrapolated to higher frequencies.

Collin's theory,'® taking into account the effect of frequenéy on
birefringence is given below. These formulas were used in determining
the length of the plate, including the taper 1éngths. The formulas give
the dielectric constants for the two polarizations; it is then a simple
matter to determine the differential phase shift per unit length. We

first give the static values of the dielectric constants of the composite

material:
"qm 1y -
%1 = 1 - " g (10)
d

and

n, = 1+ (n,-1)% . (11)

2 d S

Here, %1 is the static dielectric constant of the wave with E-field par-

allel to the reference axis (parallel to the plane of the laminations),
and %2 is the dielectric constant for the case of perpendicular polariza-
tion. The formulas for the second-order approximations of the dielectric

constants are:

2
o [(P11 + P )" - 4n] 2
1 4AP00(2P00 - Pll) N

Im

s

(12)

O N

and

(%g - 1) 2
2 .
w! = wu_ o+ -4 32 sin2 ﬂ'E + sin 2“’2] 5 s (13)
2 2 2 S 51,2
16m >\0
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where

2
A Poof11 ~ Po1 ¢
n, - 1
d
P = 1 - —
00 ny S
n. - 1 )
p o= -4 W2 ot
01 ”d m - S
n, - 1
_ d -~ 1 t
P11 = Poo T T s -

The formula for the total differential phase shift (2y) of a uniform
plate is -

Y = ﬁdgﬁzz —//;Z)/k radians |, (14)

where d is the length of a uniform (untapered) anisotropic plate. As an

example of calculations of plate lengths by these second-order formulas,

we find that for d = A = KO’ the differential phase shift per free-space
wavelength, for the parameters adopted for the test plate in the uniform
region, is 51,82 degrees at a value of S/?\0 = 0.53 (fo = 20 GHz). (This
compares with a static value of 44.8 degrees per free-space wavelength.)
A uniform plate must then be slightly greater than 2 inches long to yield
180 degrees differential phase shift. A tapered plate would have to be
somewhat longer, since the tapered portions contribute less to the total

birefringence than the uniform portion.

The dimensions of a tapered 1amination are given in Fig. 5. The
length dimension was obtained as follows: The birefringence of the
dielectric sandwich material was calculated for values of t/S.and S/)x0
from O to 1.0, in steps of 0.1, For the uniform region, where t/S = 0.4,
the birefringence per free-space wavelength for S/X0 = 0,53 was found by
interpolating between computed values of birefringence for S/K0 values

of 0.5 and 0.6. Likewise, in the tapered region, where t'/S varied from
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FIG.5 SKETCH OF A PLATE LAMINATION, SHOWING DIMENSIONS

zero to 0.4, the birefringence of a single taper in terms of differential
phase shift per free-space wavelength was calculated, using Simpson's rule.
The birefringence of a complete plate with two tapered end portions equal
in length to the central uniform portion was then computed by an averaging
process. Thus, with two tapers yielding 31.16 degrees (computed) differen-
tial phase shift per free-space wavelength each, and a uniform portion
yielding 51.82 degrees, we obtain an average of 38.04 degrees per wave-

length at A = A The overall required length is thus 180/38.04 = 4.73 wave-

0
lengths. With A = 0,59 inch at fo = 20 GHz, we find the length to be 4.73 X

0.59 = 2,79 inches.

In the interest of brevity, the above description of the computation
omits the method used to handle certain small details. These included
the original use of ny = 2,56 rather than 2.53 (manufacturer's datum);
the fact that the average lamination thickness was about 0.004 inch thicker

. than nomihal, and corrections for these differences. A recomputation of
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the center frequency of the plate, after it had been fabricated and after
the above corrections had been made, yielded a center frequency of 19.85 GHz,
(A later recalculation of the center frequency at the precise value of

S/)x0 = 0.53, rather than an interpolation from previously computed data,

yielded £, = 20.35 GHz. )

The dimensions of each lamination are given in Fig. 5. A sketch of
the front view of the plate is shown in Fig. 6. The laminations are sepa-
rated by phenolic washers 0,194 inch thick. The plate frame is one-inch-
thick phenolic laminate and is mounted on a rotatable sector of a circle
10.5 inches in radius, having its center at the center of the plate. The

sector, in turn, is mounted on a large plywood base and can be clamped
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FIG.6 FRONT VIEW OF A HALF-WAVE PLATE ASSEMBLY
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into position at various angles to the vertical. A photo of the plate

mounted on its base is shown in Fig. 7.

C. TEST RESULTS ON THE HALF-WAVE PLATE

The first half-wave plate was tested at the (originally) calculated
center frequency of 19.85 GHz. The method of testing was to line up the
test antennas in parallel (without the half-wave plate) so that a signal
close to the maximum (which was made the reference level) was received.
The half-wave plate was then inserted midway between the transmitting
and receiving antennas, and its reference axis was varied from perfect
parallelism with the plane of polarization of the incoming wave to a
maximum angle of 45 degrees thereto in 5-degree steps. At each such
position, the level of the received signal was noted, and compared with
the reference level. The results are plotted as attenuation (dB) vs.
orientation of plate (degrees) in Fig. 8. Two experimental curves of
this characteristic, plus a theoretical curve based on Eq. (1) are given
in Fig. 8. The lower experimental curve was obtained with the aid of a
precision rotary attenuator, while the upper one was made by assuming
perfect square-law operation of a crystal detector. The precision atten-
uator method presumably is more accurate than the crystal detector method;
however, both are reasonably close to the theoretical curve, except in

the region above plate orientations of 36 degrees.

In addition to testing the plate at the calculated value of fo, tests
were made to determine the actual center frequency. These yielded a center
frequency fO = 20.65 GHz, with an estimated measurement accuracy of
10,15 GHz. (Later measurements on a filter composed of five identical

plates gave £, = 20.4 GHz. )

In making the described measurements, it was necessary to fully
absorb or divert (that is, reflect out of the system) the output wave
orthogonal to the desired wave. Since the undesired component was hori-
-zontally polarized, plane gratings made of parallel thin wires spaced
one-eighth inch apart were placed on each side of the test plate. The
wires were horizontal, and fhe grating planes were at 45 degrees to the

propagation path. The undesired component was thus reflected out of
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PLATE ANGLES. (The lower experimental curve was obtained
with the aid of a precision attenuator; the upper curve was made
by assuming a perfect-square-law crystal detector.)
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the system, while the desired component was transmitted freely through
the two gratings. Also, thin absorbent cards were placed inside each
horn so that the desired component was transmitted freely and the un-
desired component was absorbed. These precautions were necessary to pro-
vide proper termination of all four (possible) ports of the network, the
two input ports and the two output ports, as called for by theory. If
this were not done, the undesired cross;polarized component would be
reflected by the horns as in a Fabry-Perot resonator, ultimately enter-
ing the receive horn and disrupting the test measurements. The divert-
ing gratings and the absorbing cards have the effect of severely dampening
resonances of the undesired mode and thus preventing spurious responses

of that type.

For this first test at fo on a single birefringent element, there
appeared to be little or no reflections from the plate; the insertion
loss was found to be very low, the measured center frequency was quite
close to the design value, and the transmission-vs.-plate-angle charac-

teristic was generally close to theoretical.
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ITI DESIGN AND TEST OF A FIVE-ELEMENT FILTER

A, DESIGN

Once f0 was chosen and the birefringent plate was designed, it re-
mained only to choose the number N of plates to be cascaded and to deter-
mine the angles of orientation of each plate with respect to the input
wave polarization. Solc® gave simple design formulas for filters with
any value of N. These formulas were of two types: one in which the
plate angles were arranged so as to tilt alternately, first on one side
and then on the other side of the input polarization (this is called the
folded-type filter), and one in which the plate angles increased mono-
tonically in one direction (this is called the fan-type filter). The
four possible respounses of these two filter types are shown in Fig. 3.
The upper row in Fig. 3 shows the responses of the filters when the re-
ceived signal is polarized parallel to the input signal, and the lower
row shows responses for the orthogonal wave. One can easily see that
the lowest-center frequency, non-zero, narrow pass band occurs for a
folded-type filter in the 90-degree output polarization, i.e., for the
case illustrated in the lower right box of Fig. 3. The more plates used
for the filter, the more ripples there will be in the stop-band regions
on each side of the first pass band and, as indicated by Eq. (9), the

narrower will be that pass band.

Solc's formulas for these two types of filter categorized by plate
arrahgement can be further classified as to sophistication of method of
determining the actual plate angles. In the simpler class of filter,
the absolute values of the difference angles between adjacent plates are
equal and are identical for both the fan and the folded types, for the

same value of N. The plate difference angles for the general filter of

N plates are:
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Py = Bl

Py = By - By

Py = By~ By

pp = Bp - BN Ty (15)

where the Bi are the plate angles as before, and Bp is the angle of the
principal axis of the frame of reference for the output waves. The for-

mulas for the plate angles of the folded type of filter are

Bi = B , (i odd)

Bi = -8 , (1 even),
and

Bp = 90 degrees (16)
where

B = 45/N degrees . (17)

The equations for.the fan-type filter are given by:

w
1l

(26 - 1)B, (i =1 to N)
and

8 = 0 18
X (18)
One may thus easily derive the design of one type of filter from the
other. Furthermore, the response shapes will be identical except for a
shift of one-half cycle in Y and a shift of the output arm to the one

orthogonal thereto, as can be seen in Fig. 3. The ripples in the stop
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band that are nearest to the pass band are generally quite severe in
this type of filter, and for large values of N they are orders of mag-
nitude greater than the lesser ripples. This undesirable situation can
be ameliorated to a certain degree in Solc's second class of filter de-
signs,® where the lBil of Eq. (16) are not equal. In order to test an ex-
perimental filter, the first class (equal plate angles) was preferred as
a design basis, since the larger stop-band ripples could be more easily
measured and the equal-angle design could be more easily set up. Filter
designs in which all stop-band ripples are equal in magnitude are dis-
cussed later in this report. At this point in the research, no such

designs for birefringent filters were available.

Four additional plates identical to the first test plate were con-
structed so that a filter with up to five plates could be tested. The
advantage of testing a five-plate filter over a four-plate filter, as
originally planned, can be seen from.Figs. 9 and 10. These two graphs
are the calculated frequency responses of an equal-angle four- and five-
element filter, respectively. 1In Fig. 9 the solid line shows the cal-
culated frequency response using Collin's second~order theory!® described
in this report, for a set of alternating plate angles Bi = 11,25 degrees
in a four-element filter. (The method of calculating the response will
be described later.) The solid line in Fig. 10 shows the response of
a five-element equal-angle filter. 1In this case the plate angles are
+9 degrees. One may nhote that the peak of the lower stop-band ripple
for the four-element filter occurs slightly above 8 GHz, while in the
five-element filter that peak occurs at about 11 GHz, making it much
more observable in an X-band test setup. A similar situation holds for
the first upper ripple in the upper stop band, so that the value N = 5
appears to be a better choice for testing an experimental birefringent

filter.

In éddition to aiding the selection of N, Figs. 9 and 10 show quite
clearly how the nonlinear birefringence-vs.-frequency characteristic of
the artificial dielectric medium causes a crowding of the pass bands and
stop bands at the high-frequency end of the spectrum. A comparison be-

tween the filter responses for the ideal linear response medium and the
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non-linear medium can be made in Fig. 9 by comparing the dashed line,
representing a linear response, with the solid line. (The dashed line

in Fig. 9 is for a linear filter assumed to be centered at fo = 20,35 GHz;
it is not the calculated first-order response for the plate structure shown
in the inset, which would have a higher center frequency than the fo of

Fig. 9.)

The dashed line in Fig. 10 is the complementary output (absorbed
component) of the five-element filter and is labeled "direct wave," since
its E~field lies in the same plane as the input wave., It would appear
that the stop-band ripples, other than those closest to the pass bands,
are missing; however, this is only because their amplitude is impercep-
tible on the scale used in Fig. 10. These minor ripples are shown in some
of the following figures. (There are actually two ripples in the lowest

stop band--four in all the others of a five-element equal-angle filter.)

B, TEST

The five-element folded-type filter was tested, over the range of

8 to 33 GHz, first in the narrow-band (bandpass) mode, i.e., with the output
taken from the orthogonal arm. The test results together with the calcu-
lated response (filter attenuation vs. frequency) are shown in Fig. 11.
(The method used in calculating the response of birefringent filters is
outlined in the next section.) Here, measurement accuracy depended on
precision attenuators. Photographs of the assembled filter and the test
setup are shown in Figs. 12 and 13, respectively. The experimental points
plotted in Fig. 11 were obtained by two methods: In the frequency range
above 22 GHz, the measurements were made at discrete frequencies; at lower
'frequencies, the frequency was swept electronically. The experimental
‘points in the region below 22 GHz also include some point-~by-point measure-
ments as a further check. The reference levels were measured when the

test horns were (polarized) parallel and the filter was absent from the
path of transmission. The receive horn was then rotated 90 degrees, caus-
ing the received signal to be attenuated by about 40 dB or more, without
the filter in position. The filter was subsequently inserted in the path

of transmission and the signal level was again measured.
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FIG. 12 PHOTOGRAPH OF THE EXPERIMENTAL FIVE-ELEMENT FILTER

{(See Figs. 11 and 14 for measurements on this filter.)
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A plot of the filter response for the bandstop mode is shown in
Fig. 14 over the range 16 to 33 GHz. For reference purposes, the calcu-
lated theoretical responses of both modes are plotted on the same scale
in Fig. 15; however, here the abscissa is the parameter ¥, so that there
is no crowding of the response shape in the upper part of the spectrum
such as occurs when frequency is used as the independent variable (Figs. 11
and 14)., The filter response shown in Fig. 14 was made with both antennas
aligned parallel, and they remained so throughout the test; no rotation

of the horn was required.

The test results (Figs. 11 and 14) tend to confirm the validity of
Collin's second-order theory of the birefringence of artificial aniso-
tropic dielectrics,® and Solc's theory with respect to equal-length bire-
fringent filters.® Solc had, of course, constructed filters at optical
frequencies, while the work at SRI was done at frequencies many orders of

magnitude lower. Thus, instead of a filter diameter of many thousands of
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FIG. 15 COMPUTED ATTENUATION RESPONSE OF THE FIVE-ELEMENT EQUAL-
ANGLE FILTER WITH y AS THE INDEPENDENT VARIABLE

wavelengths, our filter is only about a dozen wavelengths across, and
there are probably appreciable phase variations in the receive horn

aperture.

It may be noted in Fig. 11 that the region of closest agreement be-
tween test measurements and calculated response lies in the range 13 to
24 GHz. Below this range it was found that the diameter of the test beam
was noticeably larger than at the design frequency, and some of the radi-
ated energy appeared to be in a position to be intercepted by the frames
of the plates. This situation could have modified the filter response
to some degree, by either guiding or focussing the beam. This supposition
is supported by the fact that in the lower~frequency region, the measured
response was consistently greater for both the narrow-band (bandpass) mode
of Fig., 11 and the bandstop mode (this region is not shown on Fig. 14).
In particular, for the bandstop mode a net pseudo-insertion gain of about

1 dB was measured, whereas the attenuation should have been near zero
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decibels, This anomaly tends to support the belief that some energy
from the transmit horn bypassed the receive horn, owing to natural
spreading of the beam, and then, when the filter was inserted in the
transmission path, it was redirected into the receive horn, where it
interfered constructively in the receive horn aperture. It is more rea-
sonable to attribute this pseudo-insertion gain effect to scattering by
the plate frames, or to diffraction from the plate edges\(similar to the
focussing of a 1ens) than to an inherent quality of the artificial bire-

fringent medium,

The deviation of the measured points from the computed line in the
upper stopband (Fig. 11) may be attributed to one of two causes, or to
a combination of both causes. First, we had difficulty in satisfactorily
dampening resonant modes of the undesired (direct—wave) responsgse during
the course of the measurements in the upper stopband (Fig. 11). Some of
this difficulty was caused by the fact that adjustments of wire gratings
and absorbent cards were made at fixed frequencies, as were the measure-
ments, so that there was always the possibility of hidden interactions
which were canceled out during adjustment but which reappeared when the
filter was inserted. Also, part of the difficulty may be attributable to
the inaccuracies in the horn construction, which are more serious at the
higher frequencies, especially when one considers that the horns were
operating at about twice their original design frequency, Dispersion in
the test measurements in the high-frequency region tend to support the

above reasoning,

Second, it is quite possible that the energy distribution in the
infinite medium postulated by Collin's theory does not occur in a finite-
length plate for the large S/A values used here, even when long portions
of the plate are tapered. The first-measured near-null above the pass-
band in Fig. 11 occurs at about 1 GHz above the computed null frequency,
and the first-measured stop-band ripple appears to be somewhat spread out,
as though there was a relaxation of the nonlinear second-order effect, in

support of the above supposition.
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IV ANALYSIS AND SYNTHESIS

A. ANALYSIS OF FILTERS WITH EQUAL-LENGTH PLATES

Evans!! has described a method of calculating the response of bire-
fringent filters composed of equal-length elements using a matrix multi-

plication technique attributed to Jones.!?

A complex output wave vector ﬁ is found by premultiplying the

ouT

input wave vector E by a matrix [M] representing the birefringent

IN
filter:

B = (MR, (19)

The wave vectors are two-element column vectors and M is a 2-by-2 square

matrix. Thus

E = EX and E = Ev
ouT B IN £ )
Y H
Expanding Eq. (19), we obtain
= A 2
By M By + M oBy (20)
and
EY = M21EV + M22EH . (21)
For a vertically polarized input wave of unit amplitude (EV =1, B, = 0)
the output wave components are seen to be
E, = M, E, = M, . , (22)

* The X-Y and V-H axes are independent, with the X-axis at an angle 8
to the V-axis, P
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It now remains to specify the components of the filter matrix [M], which

is the product of plate matrices [P] and rotation matrices [S]. First,

the matrix for a plate is given by
[p] = , (23)

where, as before, 2y is the differential phase shift of the two orthogonal

waves on the principal axes of the plate. The matrix for a rotation by

an angle P is

cos B ~sin B
[s(B)]l = . (24)

sin B cos P

The [S] matrix rotates the wave vector and plate (as a system) so that
the plate axis is aligned with the vertical axis, and then rotates them
back again to the original angle, so that the vertical and horizontal
complex components of the output vector are obtained. This is done for
a single plate through a combination of pre-multiplication and post-

multiplication by the [S] matrix as follows:
Egyr = LS(B)IPIIs(-B)IE;. . - (25)

For several plates we obtain a chain matrix, which--after a simple sub-

stitution-~can be put in the following form:
Byyp = [8(-p)1[PIls(-py) P18 (~py_ | )]0P]...
[s(-p,) IR0 (-p )] (26)
Here the Py are as defined in Eq. (15). Equation (26) is easily programmed,

and it has been used to compute filter responses. Since the independent

variable in the [P] matrix is vy, the frequency response of the filter
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was obtained by substituting frequency values corresponding to values of
Yy used in the filter response calculations. A curve showing the needed
relationship had been calculated by Egqs. (10) to (14) for the specific
plate structure of the filter and was used here. Later, the two programs
were combined so that frequency was the independent variable and frequency

response was given directly by the computer.

B. SYNTHESIS OF OPTIMUM RESPONSE FILTERS
1. General

Harris et al described a general procedure?® for the synthesis of
lossless birefringent networks. In the referenced article, an example
of an optical discriminator designed using this theory and a full descrip-
tion of the physical limitations on the response shape are given. Basi-
cally, these are governed by the conservation of energy (the total power
in both output arms shall be equal to the input power) and the stipulation
that there shall be no more conditions placed on the specific shape of
the response than there are degrees of freedom in choosing the plate
angles'and the angle of the output horn or polarizer. Thus, in an N-plate

filter there are (N + 1) allowed degrees of freedom,

Before the synthesis procedure can begin, a Fourier series representa-
tion of the desired response must be found. Now, the standard Fourier
series method leads to a 1eastfmean—square approximation of zero response
in the stop band with accompanying large amplitude ripples near the pass-
band edge, a condition known as Gibbs' phenomenon. Furthermore, the
stop-band ripples are-grossly unequal (also true of Solc's filter designs),
which is precisely the situation one attempts to avoid in filter design
work., Dolph's'?3 @ethod of designing antenna arrays with equal—-amplitude
sidelobes includes a method of obtaining a Fourier series with equal-'
amplitude ripples; - His method is employed here as a preliminary step in
the synthesis procedure properi then the Harris method? is used to obtain

birefringent filters with equal-amplitude stop-band ripples. The Dolph

* This shall be known throughout the report as the "Harris" procedure
or method.
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method will be illustrated for the case of N = 5 up to the point of

obtaining formulas for coefficients of the Fourier series after which,
Harris's procedure is required. Following that, iterative procedures
good for any value of N will be given and the method of obtaining them

will be discussed,

Let us first consider the mathematical form of the response Dull of
Eqs., (20) and (22)] of equal-length, lossless birefringent filters.
If the components of M11 are found by multiplying out Eq. (26) for a
specific value of N, one obtains sums of exponential terms in the variable
Y, with coefficients that are functions of the plate difference angels Py
including pp. We shall use the o, of Eqs. (15), (16), and (18), and be
concerned only with folded and fan-type filters that have their plates
symmetrically or antimetrically disposed about certain axes on the central
plane of the filter:; the vertical axis for the folded type, and a 45-degree
line for the fan type. 1t can then be shown that the term M11 can be put
in the form of a Fourier cosine or sine series., For the fan-type filter,

with N even,

N
Moo= Ay + PN A,_ cos (xvy) (k is even) , (27)
k=2
and with N odd,
N
M, = f A, cos (ky) (k is odd) . (28)

For the folded-type filter, with N even,

N
M = Jjf T A_ sin (ky) (k is even) s (29)
11 k
k=2
and with N odd,
N '
M, = f A, sin (ky) (k is odd) . (30)
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The expressions for the M21 outputs for the two types of filter are more

complex than Eqs. (27) through (30), and the latter equations are more
suitable for the approximation procedure. The one used in this report

is Eq. (28), which is a Fourier cosine series with only odd terms,
corresponding to the direct output of a fan-type filter with N odd. A
fan-type filter will thus be directly synthesized; however, as mentioned
earlier, the analogous folded-type design can be easily obtained from

the fan-type design; in fact, the tables of Sec., V reflect this procedure.
In respect to the above discussion on symmetrically arranged plates and
the resulting mathematical form of the response functions, we may also
note the following: Mertz'? and Harris? showed that the frequency
response of lossless, impedance-matched birefringent filters must be of
the form of a finite Fourier exponential series. If one further requires
that the response be symmetrical or antimetrical about vy = W/Z, then

only odd or only even terms appear in the series, so that it can be
converted to a Fourier sine or cosine series as in Egqs. (27) through (30).
This suggests that the synthesized optimum response filter will have a
symmetrical or antimetrical arrangement of the plate angles, which is
indeed the case. The symmetry relationships that were discussed_briefly
here are fully explained in an article by Ammann'® on the general

properties of birefringent networks.

2. Finding the Fourier Series (N = 5)

Dolph’s13 design method as applied to our problem is to take the
coefficients of an equal-ripple Chebyshev polynomial term by term and
make them the coefficients of a polynomial in the variable (cos y). The
latter is then a power series in (cos vy)¥* with the same equal-ripple
behavior as the Chebyshev polynomial; however, because of the periodic
behavior of the cosine function, this power series is also periodic, and
of course, unlike a Chebyshev polynomial, it is always finite. The

power series is then rewritten in the form of a Fourier series, as

¥* Part of the Chebyshev function is discarded in this process.,
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required for the Harris synthesis procedure. Two scaling procedures must

also be used, These will be done before the substitution of variables,

described above, is made.

We start with a Chebyshev polynomial of order 5, sketched in Fig., 16:

T (y) = 16y° - 20y° + 5y (31)
]
T5(y)
+i
=1 ) Ty
=1
TA -6040-1i

FIG. 16 SKETCH OF THE ESSENTIAL CHARACTER
OF A CHEBYSHEV POLYNOMIAL OF THE
FIRST KIND, OF ORDER 5

where T5(y) is an odd polynomial with equal ripples of maximum amplitude
#1 in the interval -1 < y < +1. Outside this range, Ts(y) increases

in the negative or positive direction monotonically. The ripples cor-
respond to the low-amplitude response ripples in the stop band of the
birefringent filter, hence we must add a scale factor to the polynomial
and thereby reduce the ripples to the desired value, say ¢ <1, This

is done by multiplying the polynomial by e, which will give another

equal-ripple polynomial, as follows:
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P5(y,e) = €T5(Y) = e(16y5 - 20y3 + 5y) . (32)
The ripples in P5 now have a maximum amplitude of +e¢. The second scaling
procedure has to do with determining how much of the original Chebyshev
polynomial is to be discarded and how much retained in a specific qesign.
Note that since the entire equal~ripple portion of P5 corresponds with
the stop band, a portion of the monotonic region of that function must be
retained for the pass band and the remainder-discarded. This is done by

replacing the variable y by y/yl, where y1 < 1. The two scaling ﬁroce—

y
Pp (¥ e
5(y1 )

dures yield

i
o
-
[9}]
/‘_\
g kg
'.—\
\_/

[}
®

5 3 _
Y - ogi_ Y
165 - 2055 + 5y , (33)

Yy Yy 1

which is sketched in Fig. 17, The constant yl corresponds with the edge

of the stop band in the Fourier-series representation. Since the Chebyshev

o (L
+1
| +€ |
7N
=1 Y 4 ___L-L+__ii_. >y
-€
., STOP:
BAND" \(E
PASSBAND
TA-6040-12

FIG. 17 THE SCALED CHEBYSHEV POLYNOMIAL
OF ORDER 5
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polynomials always take on the values #1 at y = 1, Ps(y/yl,e) always

takes on the values *e at y = yi, as can be easily ascertained from

Eq. (33).

We next make the substitution

cosy =y - (34)

which yields a power series in the variable cos Y. We now have

cos 16¢e 5 20¢ 3 5S¢
P , € = =g~ cos  y - “5- cos”y +— cosy . (35)
1 vy v 61

It should be noted that the use of the cosine substitution [Eq. (34)]
reverses the response shape from left to right when v (not cos vy) is the
independent variable, so that the pass band is centered on y = 0, as is
required for the fan type of filter., One more step is needed before

Eq. (35) can represent the normalized response of a filter with zero loss
at band center. We must insure that P5(cos y/yl, e} = 1.0 at v =0, as
sketched in Fig. 18, for zero loss at band center, This is done by
fixing the relationship between ¢ and y . First, v is set equal to zero;
then, after equating the right-hand side of Eq. (35) to 1.0, we solve

for € in terms of ¥yt

= -t . (36)

¥ We can also solve explicitly for y, using Eq. (39):

1 -
y1 = cosh s cosh

1

® [

Here, yIl > 1, hence cosh is substituted for cos in Eq. (39).
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M,

+1
1/ +€
0 . .
/\\/;_6 yu/\_; % .

PASS{  STOP-
BAND™™ BAND

TA-6040-13

FIG. 18 SKETCH OF THE ESSENTIAL CHARACTER OF A FOURIER
COSINE SERIES OF ORDER 5 DERIVED FROM THE
SCALED CHEBYSHEV POLYNOMIAL. (This is also the M,
term of the matrix for the output waves of a fan-type, five-element,
equal-ripple response filter when the average time delay is assumed
to be zero.)

From Eq. (34),
cos.y; = ¥ , (37)

and Y1 is seen to be the edge of the stop band in the variable y. Once
the nge of the stop band Yy has been chosen, the value of y; can be
computed from Eq. (37), and € may then be computed from Eq. (36); thus
the response of a five-element fan type of birefringent filter is

completely specified,

The next step is to put Eq. (35) in the form of a Fourier cosine

series, which is then identified as M, of Eq. (28):

it

cos _ ‘ , -
P5< v, , e) = Ag cos 5y + Aj cos By + A cos Y Mil(Y) ,

(38)
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where the Ak(k =1, 3, and 5) coefficients are functions of ¢ and Yl' Now,

making use of the defining equation for Chebyshev polynomials,

T, (cos y) = cos (ky) , k an integer , (39)

we make the following substitutions in Eq. (38):

cos (3y) = 4 cos> v = 3 cos vy (40)

and

cos (5y) = 16 cos® Yy - 20 cossy + 5 cos vy . (41)

After gathering like terms and equating coefficients of the same power

of cos vy in Egs. (35) and (38), the following are obtained:

. e
168, = 16— , i
Yy
-20A_ + 4A -20 =-
5 3 3 !
Y1
5A, - 3A, + A, = 5— (a2)
5 3 1 Yy

Equations (42) are solved in an iterative manner to yield the coefficients

of Eq. (38):

-5
A5 = eyl
-5 -3
A = -
-5 -3 -1
A = - 43
1 5¢ (Zyl 3y1 + y1 ) _ . ( )

Finally, an exponential Fourier series is constructed from Eq. (38):
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A A A A
= 5 J%y =3 ) J3Y ) I 1} v
%JW) = <2>e + (z)e + (2>e + 5/ e
A . A . '
+ (—;) e I3 <7§> e I%Y . (44)

Equation (44) is in a form suitable for use with the Harris synthesis
procedure, which is given in the following paragraph in outline only.
Equations (35), (38), and (44), which are all identical functions of Yy

are approximately sketched in Fig. 18.

3. Harris's Synthesis Procedure

The procedure makes use of the coefficients of the two exponential
series that describe the desired filter output and the orthogonal (undesired)
output, Since only the Fourier series of the desired output can be
found in the direct manner described above, the first step in synthesis
is to find the orthogonal output. (We assume, at this point, that the
coefficients of Mll(y) have been computed for a particular value of yl.)

The orthogonal output is obtained by invoking the principle of the con-
servation of energy. Accordingly, the following equation is true at
all frequencies:

lMlllz + IM21|2 =1 . (45)
This equation states that the total output power normalized to the input
power is unity at all frequencies in a lossless, nonreflective, bire-
fringent filter. Equation (45) is then solved for |M2112:
|2 1% . (46)

= 1- lMll

IM21

Now, M21 is in the form of an exponential series for the same reasons
that M, is.7>'% The problem is how to find that series, given IMZIlz.
This is explained by Harris,? using a procedure described by Pegis that
includes complex root-finding methods. During this process, one-half

of a set of 2N roots are chosen for use in the ensuing operations, and
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the remaining roots are discarded. The correct roots to choose are those

with absolute magnitude less than or equal to one.

After the exponential series M21 has been found, a matrix multi-

plication method is used to sequentially find the plate difference
angles pi. This series of steps starts with finding the output polarizer

difference angle pP = B -8 and then works backwards from the last

p N’

plate difference angle, p to the first, pl, thereby obtaining the pi of

)
every pair of elements inNthe filter., Then, by changing the signs of
alternate pi of the fan-type filter, we obtain the design of a folded-
type filter, and finally, the plate angles Bi' As explained earlier,
this also requires a change of the output plane of polarization from the

direct to the orthogonal wave, but this change is automatically accomplished

by the sign reversal of all the alternate pi, including pP.

4., An Equal-Ripple Design (N = 5)

The response shape of an optimum design is shown in Fig. 19, for
a folded-type filter, with N = 5, The abscissa is the variable y. Since
the response is symmetrical with respect to y = 90 degrees, only the
lower stop band and half of the first pass band are shown. The edge of
the stop band is y{ = 43.4 degrees, and the ripple level is ¢ = 0.02.
(Figure 19 gives the relative power output, hence €2 is shown there as
the peak power of the ripples in the stop band.) Although the curve of
Fig. 19 was originally found by an approximate method emﬁloyed before
all the details of the exact synthesis procedure had been worked out and
programmed on a computer, it is close enough to the exact curve as to be
indistinguishable from it to the scale drawn. Likewise, the plate angles
shown in Fig. 19, which also were obtained by an approximate method, are
accurate to the significant figure shown. The exact plate angles obtained

from the synthesis by computer are

i

Bl = BS 4.,90240 degrees

82 = B4 -10.1365 degrees
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FIG. 19 COMPUTED RELATIVE POWER OUTPUT OF A FOLDED TYPE
OF EQUAL-RIPPLE FIVE-ELEMENT FILTER
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14,9221 degrees

w
w
1

ke
il

90.0 degrees .

The input for the computer synthesis was Yy = 46,6 degrees for the fan-
type\filter, corresponding with y{ = 90 - 46.6 = 43.4 degrees, the edge
of the stop band of the folded-type filter response of Fig. 19.

5. Synthesis of Maximally Flat Stop-Band Response Filters

The maximally-flat condition is met when all possible derivatives
with respect to the variable y in PN(y) (including the Oth-order deriva-
tive, i,e., the function itself) are set equal to zero at y = 0., This is
done by letting all but the NP coefficients of the terms in the poly-
nomial equal zero. Since there are N such terms, N of the (N + 1)
allowed degrees of freedom are used. The last remaining choice is to
make the output unity at the design frequency, which is done by making

the Nth coefficient equal 1, yielding

N

Then with the usual substitution,
cosy =y , (48)
we obtain the matrix element M11 of the fan filter
N
M, = cos’y . (49)

When Eq. (49) is expressed as an exponential Fourier series, the co-

efficients of the terms of the series are found to be the binomial co-
' 2

efficients of order N. Likewise, the coefficients of |M11| in the

expression 1 - ]Ml of the orthogonal (power) output are the binomial

N
coefficients of order 2N, From this point on, the synthesis proceeds
by the Harris method, as for the equal-ripple case in part 3 of this

section (B=3), except that no auxiliary parameters such as € and Yy of
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the equal-ripple case enter into the synthesis procedure. However, in
order to choose a suitable value of N for a given application, it is
necessary to know the relationship between N and a suitable defined band-
edge parameter. Using the 3-dB point as the band-edge parameter in v,

we have [from Eq. (49)] for the fan-type filter,
1/2N
cos v, = (1/2)*/ , (50)

from which the band-edge birefringence parameters Yl and Y; = 90 - Yl

(for the fan- and folded-type filters, respectively) may be. computed,

6. Formulas for Equal-Ripple Filters with Any Value of N

In order to compute the plate angles for any value of N and various
values of Yl’ the following iterative formulas were developed. These
formulas give the Chebyshev coefficients, the coefficients of the two
Fourier exponential series M

11
polynomial (A8) of the Pegis procedure, as described in Harris.”

2
and lM21‘ , and the coefficients of the

a. Chebyshev Coefficients

The coefficient of yk of the NtB-order Chebyshev polynomial
of the first kind TN(y) is given the notation tNk for N both even and

odd. An iterative formula for the tNk is then

= - = 1 51
e 260 k1~ tyez 0 TOF K to N (51)

with the following initial conditions:

= (—1)N/2, for N even,

o
tNO = 0, for N odd,
te = b
tN_Z’ = 0, fork > (N - 2),
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b. Coefficients of the Fourier Exponential Series Mjq

First compute € from the Chebyshev coefficients

-1 N -k
T t_vy , for k odd . (52)
ko1 Ne1

e

il

We then have for the coefficients of the cosine series,

k+2
t 2
Ayx T % - € Nﬁ—ﬁ -3 Av-2(5-2)%8-2(5-2), N-x ’
N-k, N-k v, j=2 J Jme/

(53)

The AN—k values are to be computed for even values of k, over the range
k=0 to N- 1. Note that if k = 0 in this equation, the summation term
is understood to be zero. The coefficients of the exponential series

- -32y -4y ' -j(N-2)y - JNY
M11 Co + Cze + C4e + oees Cn_ze + CNe
obtained from the AN_k values as follows:

are then

(54)

These are analogous to the coefficients of C(w) in Harris's Eqs. (2) and
(20)7 and are given in the same order. Here, unlike its function in
the previous cosine series, the subscript j does not directly indicate

the power of the exponential variable,

2
c., Coefficients of the Exponential Series |M21|

N

D, = 1- X ci (55)
k=0
and
N-k
= - =1t .
Dk j§0 CjCj+k s for k o N

* An alternate procedure, replacing Eq. (52), would be to choose € and
compute yq from Eq. (39) as was done in the footnote on page 42,
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Here, again, the Dk coefficients are analogous to those of D(w) in

Harris's Eqs, (8) and (21), and they are given in the same order.?

d. Coefficients By of Eq. (A8) in Harris's Method

First, construct the following set of numbers:

R. = R + R j = OtoN, k = j toN

ik j-1, k-1 i, k-2 !
(56)

excluding those Rjk in which (j + k) is an odd number, with the initial

conditions
R,. =1 for all j
JJ
Ry = 2 for k # 0.

k
The coefficients of the Pegis polynomial [coefficients of y in Eq. (A8)

in Harris et §l7] are then computed for k = 0 to n:

N-k

- _113/2
B j§0 (-1) Rk’ k+jDk+j s (57)

with the summation over j to be made only for even values of j < (n - k).

The remainder of the synthesis procedure is as given in
Harris 23.3173 it requires complex root-finding procedures, the recon-

2
struction of the polynomial M_, from half of the root factors of lM21l ,

21

and matrix multiplications for determining plate angles. As mentioned
: 2

in part 3 of this section (B-3), the proper roots of lM21l to use in

the synthesis procedure are those with absolute magnitude less thah or

equal to one,

The iterative formulas in this section were obtained by
arraying the variéus end-product terms in two-dimensional arrays and
then looking for rules that allowed the construction of the terms in a
given row from the terms in the érevious row (or rows). 1In the case of

the coefficients B this necessitated the prior solution of the problem

k’
for each value of Nup to N =9,
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e. Discussion

Of further interest, from the network theory viewpoint, are
the computer-determined distributions of the one real zero and the (N - 1)/2
pair of conjugate zeros of the Pegis Egqs. (A8) and (AL0) in Harris.”
' 2
o1l end My,
respectively, of the fan-type filter. Here, the variables appear to be

These equations describe the orthogonal wave response ]M

Y= 2 cos 2y and X = eI?Y.  When the zeros of Eq. (A8) for IMZI(Y)IZ

are plotted in the complex Y-plane, they are found to lie on an ellipse,
the major axis of Which lies on the real axis. The roots are equi-spaced
on the ellipse in the sense that they are projections (toward the real
axis) of N equi-spaced points on the circumscribing circle, with con-
jugate roots in both the right and left half-planes, and the one real
root at the vertex of the ellipse Y = 2, The semi-major diameter of

the ellipse is a> 2, hence the center of the ellipse does not lie on

the origin-but is slightly displaced to the left thereof., The locus

of the half-cycle in y, 0 < vy < n/2 (see the lower left sketch of Fig. 3,
which shows a full cycle of the orthogonal response of the fan-type
filter) is thus transformed to 0 < 2y <1, and in the variable Y, it

is =2 < Y < 2 on the real axis, As noted above, the point Y = 2 is a
vertex of the ellipse; the point Y = -2 appears to be the opposite focus
of the ellipse. This distribution of zeros is to be compared with the
zeros of lMlez in the variable y/yl, which can be derived for the
general case by substituting (a generalized version of) Eq. (33) into

Eq. (46):

2 2.2y
|M21| = 1 GT< ) . (58)
Here, the zeros can be shown to lie on an ellipse centered on the origin,
with 2N zeros that are equi-spaced on the ellipse in the same sense as
stated above: the locus 0 < vy < ﬂ/2 is transformed to 0 < y/y1 <1 on
the real axis of'y/yl. The exact location of the zeros, derived by a

method illustrated by Weinberg,'® are
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, |
¥ -k cos(k”>

= = — | cosh ¢ -
()ﬁ_)l( yl N

j sin (55> sinh ¢, k=0, 1, 2, .. 2N -1
where

1
g . (59)

It is natural to ask what is the relationship between these
two zero distributions, and how can we derive one from the other? The
answer to these questions would make it possible to find the zeros of
M,, by formula, without the need for general (polynomial) root-finding
procedures, as was done here for the tabulated optimum-response filter

designs.

The computer-determined zeros of M21(X) are found to lie on a
pear-shaped curve with its vertex at X = 1(y = 0), with one real zero
at X =1, and (N - 1)/2 pairs of conjugate zeros (absolute magnitude
less than one) arrayed around the origin, on the rounded portion of the
curve, which is almost circular in shape. The locus of the half-cycle
in y, 0 <vy <m/2, is here the unit circle starting at X = 1(y = 0) and
ending on X = -1. As explained in Harris,”? the zero locations are

2
obtained from those of le (Y)l by the solution of a quadratic equation.
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V DESIGN TABLES FOR OPTIMUM RESPONSE FILTERS

The design tables in this section give the plate angles Bi of the
folded-type filter for all odd values of N from N = 5 to 19, and for
N =25 (see Figs. 3 and 19). In each case, five separate designs are
given for various values of the stop-band ripple parameter ¢. The tables
give the value of ¢ in terms of attenuation LS, defined by

L, = 20 log, e dB . (60)

The output wave is orthogonal to the input wave for these designs.
Heading each column are values of LS from 10 to 40 dB, These are, how-
ever, only nominal values. The exact attenuation values, from which
the tables were computed, are within 0,1 dB of the nominal values for
most of the cases listed, the greatest deviation from the nominal value
being 0.22 dB, and these exact values are given directly below the last
given value of Bi for each case. Since the folded-type filter is sym-
metrical about a central plane, only the first half of the Bi values,
including i = (N + 1)/2, is given in the tables. The angle yi [from
which L (exact) was computed] is also given for each design. Remem-
bering that Yo = 90 degrees‘is the center of the pass band for the
folded-type filter and that the response has arithmetic symmetry about
Yo the relative width of the first pass band at the ¢ level may readily
be computed as follows:

90—y]/_

Vo= —Qgo . (61)

The value of w thus obtained relates to the first pass band; higher-order
pass bands (all odd) will have relative bandwidths inversely proportional

to their order.

The approximate values of attenuation used for synthesizing the

filter designs were found by interpolation in published tables of the
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squared Chebyshev function'? listed against values of N and yil. A direct
approach would have been to solve the equation in the footnote (p. 42)

for exact values of v for given values of e¢. Such a course would have
added little to the utility of the final results. Several of the designs,
including N = 25, were analyzed by the matrix multiplication technique of
Eq. (26), and the responses at the ripple peaks were found to be within

a few hundredths of a dB of the exact value of attenuation. The Bi
values (i = 1 to N) were computed in sequential order from By to By and
were found to be symmetrical to better than 0.001 degree for the N = 25
designs, and to better than 0.0001 degree for the designs with lower
values of N, with increasing symmetry as N decreases. Since the tables
give B values that are rounded off to the fourth decimal place (in
degrees), all listed values except for N = 25 retain the full accuracy

of the computations; for N = 25 there is some (but not complete) loss

of accuracy in the last decimal place. In any case, the precision of the
tables generally exceeds the state of the art of setting devices to pre-

cise angles.

A previously unsuspected feature of equal-ripple designs that is
brought out by the tables is the fact that many of the designs (those
with the smaller LS values) have B values that do not alternate in sign.
They do, however, alternate in position about some average (non—zero)
value of  and are therefore of the folded-type design. The corresponding
fan-type filters have monotonically increasing B values, and both types,

of course, are symmetrical, or anti-symmetrical, about a central plane.

The value of y’ for a 3-dB loss in the pass band may be computed

from the following formula:

= sint [sin yj cosh 0';15 (LS + 3)] . (62)

7/
Y348

The primed values of vy denote the folded—type filter, and the values of

y{ and LS (attenuation) are given in the design tables,

Equation (62) is accurate for ripple levels of 10 dB or greater

and may therefore be used with all the design tables in this report.

56



DESIGN TABLES FOR EQUAL~RIPPLE STOP BAND
(FOLDED-TYPE) BIREFRINGENT FILTERS
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Table I: N =5
ATTENUATION 10 15 20 30 40
{NOMINAL}
GAMMA/1PRIMF 69,62 63,44 57.55 47.20 38.26
(DEGREES)
BETAIT) 15.0843 11.0060 B.3863 55708 44,1994
(DEGREES) 1.4638 -3.,7661 -6.8380 ~9.6124 -10.5991
I=1929390ec0 17.7590 15.4277 14,5513 14.6327 15.4030
ATTENUATION 9.99 14.95 20.03 29.95 39.97
{EXACT)
Table II: N =7
ATTENUATION 10 15 20 30 40
{NOMINAL)
GAMMA/1PRIME 75.27 70.63 66.22 57,94 50.18
{DEGREES)
BETA[T] 13.1514 8.9231 63180 3.5400 22297
{DEGREES) 4,1609 -0.4030 ~2.8306 ~44.7216 -5.0604
I=1923390c0 15.0415 12.0154 10.5452 9.6391 G6754
3.0640 -2.3182 -5.6122 -9.,1972 -11.0692
AYTENUATION 10.01 15.01 20.00 29.94 40.12
(EXACT)
Table I11: N =9
ATTENUATICON 10 15 20 30 40
{NOMINAL)
GAMMA /PR IMF 78.%2 74.81 T1.29 64 .49 58.01
(DEGREES)
12.2189 7.9079 53422 2.6692 1.4881
BETAl 1} 5.5991 1.2546 -09591 —-25860 -2.7683
(DEGREES) 13.4851 9.9470 8.0665 6.4334 $5.8674
[=14213000s 46174 ~0e4392 -3.3744 -6.3675 -T.7108
14.0249 10.9210 Fe5154 8.8880 9.3104
ATTENUAT ION 9.97 15.02 20.00 29.99 40.08
{EXACT)
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ATTENUATION
(NOMINAL)

GAMMA/1PRIME
{DEGREES)

BETAII)
(DEGREES)
1217213'000

ATTENUATION
(EXACT)

ATTENUATION
(NOMINAL)

GAMMA/1PRIME
(DEGREES)

BETA{I]
{DEGRFES)
I=13293v0s0

ATTENUATION
{EXACT)

ATTENUATION
(NOMINAL)

GAMMA/1PRIMF
{DEGREES)

BETA[LT)
(DEGREES)
1215293500

ATTENUATION
{EXACT)

-y
ar
o

10

80.60

11.6500
6.4361
12.5368
5.6706
13.1038
5.3679

9.95

10

82.01

11.1941
6.9025
11.8489
6.3065
12.3454
5.9486
12.5332

10.00

16

83.05

10.8630
7.2211
11.3645
6.7509
11.7806
6.4123
12.0202
6.2380

10.04

]

i
5
3§

Table IV:
15

T7.52

T.3122
2.1904
B8.7176
0.8958
9.7262
0.3396

15.03

Table V:
15

19.42

6.9274
2,7831
7.9430
1.8026
8.8010
1.1604
9.1461

15.02

Table VI:
15

80.85

5.6976
3,2224
7.4587
2.4703
B.1554
1.8815
8.5843
1.6549

14.95

60

N

N

N

= 11
20

74.59

4.7790
0.0516
6.6216
-1.7551
8.0984
-2.5950

20.02

=13
20

16.93

4.4348
0.6798
5.7442
~-0.6588
6.9728
T.4974

19.99

= 15
20

78.66

4,2036
1.0996
5.1765
0.0859
6.1594
~0.7770
6.8065
~1.1251

19.95

30

68.88

2.2103
4.6525
~-4.2131
7.0802
-5.6780

30.02

30

72.06

1.9503
~0.8779
3.6283
-2.8045
5.5685
’4.4211
6.4989

29.93

30

T4.35

1.7541
-0.493%
2.3691
~-1.9076
4.4T707
~3.3279
5.5984
-3.9569

30.02

40

63.44

1.1369
~1.6861
3.8504
-5.0760
7.1592
-7.1829

39.95

40

67.30

0.9319
~1.1009
2.7283
~3.4221
5.2864
~5,.7017
6.6558

39.94

40

70,18

0.7997
-0.7516
2.057%
-2.3914
3.9620
-4.3253
5.5822
~5.2607

39.3%



ATTENUATION
(NOMINAL)

GAMMA/1PRIME
({DEGREES)

BETAILI
{DEGREES)
I=l'2'31..o

ATTENUATION
{EXACT)

ATTENUATION
{NOMINAL)

GAMMA/1PRIMF
{DFGREES)

RETAII
(DEGREES)
1219293 000s

ATTENUATICN
{EXACTY)

ATTENUATION
{NOMINAL)

GAMMA/1PRIME
{DEGREES)

BETAII)
{DEGREES)
I=1929300ee

ATTENUATION
(EXACT)

10

83.90

10.7368
T.5764
11.1272
71,2039
11.4683
6.9083
11.7047
6.T432

11.7896

9.97

10
84,46

10,3247
7.5363
10.6469
7.2246
10.9393
6.9609
11.1647
6.7826
11.2883
6.7193

10.19

10
85.79

10.0028
8.0157
10.1765
7.8453
10.3410
7.6895
10.4854
7.5596
10.5974
1.4689
10.6646
T.4257
10.6852

10.15

Table VII:
15

81 089

6.4550
3.4739
7.0490
2.8786
T.6187
2.3657
8.0419
2.0629
8.2000

15.02

Table VIII:

15

82.69

6.2072
3.6035
6.6864
3.1188
7.1600
2.6760
7.5506
23590
T.7746
2.2430

15.17

Table IX:
15

84.46

59436
4.0553
6.2152
3.7784
6.4925
3.5063
6.7529
3.2645
6.9691
3.0810
Te1132
2.9816
7.1640

15.09

61

N = 17

N

20

79.91

3.9559
1.3341
4.7096
0.5400
55037
-0.,2028
6.1364
—0.6664
6.3821

20.13

N =19
20

81.06

3.9209
1.6268
442129
1.0021
5.1467
0.3892
5.7035
-0.0737
6.0363
~0.2481

19.86

= 25
20

83.10

3.5236
1.9087
3.8607
1.5518
4.2309
l.1767
4.6006
0.8241
4.9231
0.5452
5.1455
0.3903
5.2250

20.22

30

76.16

1.6278
-0.2301
2.5424
-1a2964%
3.7038
~2.4644
4.7599
—~342743
5.,2018

30.00

30

77‘62

1.54%4
-0.0373
2.2537
-0.8627
3.1632
-1.8074
4,0756
-2.6051
4,6718
~2.9250

29.92

30

80.50

1.3333
0.2708
1.7175
-0.1700
2.2080
-0,6991
2.7599
-1.2528
3.2898
-1.7297
3.6833
~2.0112
3.8303

30.15

40
72.42

0.7100
-0.5267
1.6315
~1.725%6
3.0571
-3.2662
4.5339
-444500
5.1982

40.02

40
14,25

0.6519
-0.3723
1.3526
-1.2765%
244377
—-2.4866
3.6782
-3.6255
4.5615
~-4.,1108

39,92

40
77.93

0.5309
"0.1179
0.8882
-0.5664
1.4263
-1.1853
2.1086
~-1.90328
2.8257
~2.5725
'3.3933
-2.9870
3.6125

40.06
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VI CONCLUSION

The mechanics of adapting the theory of optical birefringent filters
to millimeter wavelengths appears to be fairly straightforward. The con-
cept of impedance-matched elements, which leads to design and analysis
methods within the present state of the art, can be implemented with arti-
ficial anisotropic dielectric media; however, the resulting designs may
not be the most compact that can be made with a given bulk dielectric
material. Hence, the methods described herein are only a beginning in

this area.

Extrapolation of the results of research on the microwave scale model
(reported herein) to millimeter wavelengths should not be difficult. The
necessarily smaller size and greater. fragility of the resulting structure
would then demand different methods of manufacture from the standard
machining techniques used for the scale model. This does not appear to
be an insurmountable problem for half-wave plates with a center frequency
as high as 90 GHz, where the thickness of a plate lamination would be
about 0.025 inch. Nevertheless, plate designs embodying anisotropic
dielectrics that are easier to construct than the air-dielectric sandwich
type of material used here might be preferred for usée at such short wave-

lengths.

The optimum-response birefringent-filter design tables, their deriva-
tion and the numerical tables, represent an important advance in the state
of the art; the analytical techniques and the numerical results should
prove useful at optical as well as millimeter wavelengths., The methods
used in deriving the optimum-response filter designs can also be used for
other useful network components, such as differential phase-shifters and
directional couplers. Topics relating to artificial anisotropic dielectrics
that are worthy of investigation include (1) improved methods of construc-
tion aimed at making them light, compact, and inexpensive; and (2) study of
the effects of reflections from interfaces between plates and between a

plate and free space, and means of dealing with such effects.
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VII RECOMMENDATIONS FOR FUTURE WORK

Problems encountered and suggestions for Solving them are given
below:

1. Edge tapers on the laminations of the birefringent plate
described herein increased its length by more than fifty percent compared
with a uniform plate. It would, therefore, be desirable to seek a means
to eliminate tapered edges, perhaps by close spacing of uniform plates,
without, of course, causing any significant degradation in filter per-
formance.

2. The positions of the upper ﬁass bands and stop bands depend on
higher-order effects in plates with large spacings (that is, large compared
with a wavelength) between laminations. Further investigation of these
effects would provide information on the upper frequency limits of specific
birefringent structures. k

3. A birefringent filter with a small hﬁiﬁbeg of plates, that
operates in its lowest passband, will not have a véry narrow passband.

For this reason it would be desirable to combine a birefringent filter
with an easier-to-construct multilayer interferencérfilter having a
narrow passband. .

4. An interference filter of the type mentioned in (3) above could

be tuned by inclination and thus could be used to suppress spurious pass-—

bands of the birefringent filter.
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